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Abstract. The stability of a bipolaron is examined in a single polymer chain coupled with
dopants considering up to the nearest-neighbour site diagonal electron–phonon (e–p) interactions.
The behaviour of the bipolaron depending on the e–p coupling constant and the on-site Coulomb
repulsion is studied within the framework of unrestricted Hartree–Fock theory using an extended
Lang–Firsov transformation and a squeeze transformation. It is shown that dopants play an
important role in the stabilization of the bipolaron and, moreover, that this stability appears
under subtle conditions. In particular, the bipolaron separates into two polarons by the smaller
on-site Coulomb interaction in the strong e–p coupling regime.

1. Introduction

Various non-linear excitations in the quasi-one-dimensional (Q-1D) system have been
discussed with the use of simplified 1D models, from which many fruitful results have been
obtained. In particular,trans-polyacetylene (t-PA), a system with a degenerate ground-
state structure, is accompanied by soliton excitations in the non-doped state [1]. Within
the approximation of the Su–Schrieffer–Heeger (SSH) [2] or Takayama–Lin-Liu–Maki [3]
Hamiltonian, this type of excitation has been successfully investigated by many researchers.
After doping in t-PA, the neutral solitons with one-half spin change into spinless charged
solitons, with an electrical conductivity increase [1].

On the other hand, it is well known that some conducting polymers such as poly(p-
phenylene) and polythiophene also show spinless transport [1]. This means that the
characteristic soliton model fort-PA is not applicable to such conducting polymers because
these polymers do not possess a degenerate ground state. As a result, it has been rather
ambiguously thought that a plausible explanation for the spinless transport of this kind of
polymer has been given in terms of the bipolaron-transport model [1]. Here, we use the word
‘bipolaron’ in the sense of a small bipolaron arising as the consequence of the competition
of the Coulomb repulsion and the self-trapping net attraction between two polarons [4]. This
is a rather tough entity to treat theoretically. Therefore, not many attempts have been made
with respect to the problem of theoretical explanations about the stability of bipolarons in
conducting polymers [5–11].

The problem of interchain stability, namely transverse transfer of polarons in conductive
polymers, has caused a great deal of controversy. Over the past few years, it has been
suggested that some disorder effects such as defects or impurities can stabilize the polaron
and bipolaron in actual conductive polymers [12–15]. Hence, it is of interest to check how
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defects and impurities can influence the stability and structure of the polaron and bipolaron.
As for the effect of defects in polymer chains, Mizes and Conwell [16] have recently
shown in a two-chain discrete SSH model that chain endings and conjugation breaks can
stabilize the polaron and bipolaron. The effect of a dopant on the interchain stability of
polaronic excitation in conducting polymers has been examined in both continuum [12, 14]
and discrete models [15] on the basis of the Holstein Hamiltonian. However, the role of
dopant, which is the most important impurity in conducting polymers, has been somewhat
disregarded in the theoretical discussion of the interchain stability of bipolarons.

In the present study, we investigate the influence of dopants on a bipolaron generated in
a single polymer chain, as the first step to obtaining a clear understanding of the mechanism
of interchain transport of bipolarons assisted by dopants. For this purpose, we adopt a
simple model Hamiltonian including up to nearest-neighbour site diagonal electron–phonon
(e–p) interactions for a single polymer chain coupled with dopants.

2. Theoretical analysis

The model Hamiltonian for a single chain coupled with dopants is a modification of the
standard Holstein [17] Hamiltonian to describe electrons locally coupled to molecular-like
oscillators. The Hamiltonian in the present work has a more explicit form (¯h = 1):

H = −t‖
∑
i,σ

(c
†
i+1,σ ci,σ + c

†
i,σ ci+1,σ )+ U

∑
i

ni,αni,β + ω
∑
i

b
†
i bi + g1

∑
i,σ

ni,σ (bi + b
†
i )

+g2

∑
i,σ

∑
δ

ni,σ (bi+δ + b
†
i+δ)− tD

∑
i,σ

(c
†
Di,σ

cdi ,σ + c
†
di ,σ
cDi,σ )

+U ′ ∑
i

nDi,αnDi,β + ω′ ∑
i

b
†
Di
bDi + g′

1

∑
i,σ

nDi,σ (bDi + b
†
Di
)

+g′
2

∑
i,σ

nDi,σ (bdi + b
†
di
) ni,σ = c

†
i,σ ci,σ (1)

wherec†i,σ (ci,σ ) is the creation (annihilation) operator of the electron at theith site with

spinσ (= α, β), b†
i (bi) is the creation (annihilation) operator of the phonon at theith site,

which is assumed to be dispersionless for simplicity, andω (ω′ for dopant sites) represents
the frequency of the phonon subsystem. As shown in figure 1,Di denotes a dopant site
with i = 1 ∼ ND. The sitedi in the polymer chain stands for the nearest-neighbour site
to the dopant siteDi . This Hamiltonian includes the intersite-transfer part of the electron
in the unperturbed chain with transfer integralt‖, the transfer part from the sitedi to the
dopant siteDi with tD, the on-site Coulomb repulsionU (U ′ on the dopant sites) between
electrons of different spins, and the site-diagonal e–p interaction with coupling constantg1

(g′
1 for the dopant sites). Moreover, the nearest-neighbour site-diagonal e–p interaction with

coupling constantg2 (g′
2 for the dopant sites) is introduced into the Hamiltonian to treat more

wide-ranging lattice deformations around the electron. In the presence of such deformation-
type e–p interaction, the modulation of the on-site energy is caused by the extended lattice
deformation. The summation overδ represents that over the nearest-neighbour sites.

Applying a unitary transformation of the extended Lang–Firsov [18] type [19] according
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Figure 1. Schematic drawing of the present model system where two dopants couple with a
single polymer chain.

to

S = expR

R =
∑
i,σ

(
g1

ω
ni,σ (b

†
i − bi)+ g2

ω

∑
δ

ni,σ (b
†
i+δ − bi+δ)

)
+

∑
i,σ

(
g′

1

ω′ nDi,σ (b
†
Di

− bDi )+ g′
2

ω′ nDi,σ (b
†
di

− bdi )

) (2)

and taking the average of the transformed Hamiltonian over the phonon-vacuum state|0〉,
we have the following effective HamiltonianHeff :

Heff = 〈0|SHS†|0〉 = −t‖
∑
i,σ

(c
†
i+1,σ ci,σ + c

†
i,σ ci+1,σ ) exp(−fi)+

∑
i

U i
eff ni,αni,β

+
∑
i,σ

εiP ni,σ + V1

∑
i,σ,σ ′

ni,σ ni+1,σ ′ + V2

∑
i,σ,σ ′

ni,σ ni+2,σ ′ +Nω

−tD
∑
i,σ

(c
†
Di,σ

cdi ,σ + c
†
di ,σ
cDi,σ ) exp(−f ′)+ U ′

eff

∑
i

nDi,αnDi,β

+ε′
P

∑
i,σ

nDi,σ +W1

∑
i,σ,σ ′

nDi,σ ndi ,σ ′ +W2

∑
i,σ,σ ′

∑
δ

nDi,σ ndi+δ ,σ ′ +NDω
′ (3)

whereN is the total number of sites in the polymer chain. The representations of the other
parameters in equation (3) are given in appendix. It should be noted thatV1, V2, W1 andW2

(equations (A7)–(A10)) have negative values, which means that the attractive interaction
occurs between two electrons.

Since we are going to study a negative bipolaron on a single chain, we assume that
there areN + 2 electrons in the chain. For the numerical analysis, we use the unrestricted
Hartree–Fock scheme, i.e. ‘the different orbital for the different spin’ scheme. Letεk,σ and
ψk,σ be the eigenvalues and eigenfunctions ofHeff , respectively andc(k,σ )i the coefficient of
theπ orbital centred on theith site in the linear combination of atomic orbitals expansion
of ψk,σ . The coefficientc(k,σ )i satisfies the following equation:

εk,σ c
(k,σ )
i = [εiP + V1{〈ni−1〉 + 〈ni+1〉} + V2{〈ni−2〉 + 〈ni+2〉} + Ui

eff 〈ni,−σ 〉]c(k,σ )i

+(−t‖ exp(−fi)− V1mi,σ )c
(k,σ )

i+1 + (−t‖ exp(−fi)− V1mi−1,σ )c
(k,σ )

i−1

−V2m
′
i,σ c

(k,σ )

i+2 − V2m
′
i−2,σ c

(k,σ )

i−2 +W1〈nDi 〉c(k,σ )di
+W2〈nDi 〉c(k,σ )di±1

〈ni〉 = 〈ni,α〉 + 〈ni,β〉

(4)
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where〈ni,σ 〉, mi,σ andm′
i,σ are the averages ofni,σ , c†i+1,σ ci,σ and c†i+2,σ ciσ , respectively.

These should be determined self-consistently.
In equation (4), we assume that〈nDi,α〉 = 〈nDi,β〉 = 0.5. This assumption corresponds

to neglecting fluctuation of the electron density over the dopants. On the basis of these, we
investigate the stability of the bipolaron due to the additional lattice deformation induced
by dopants. Furthermore, to avoid the end effect [20], we impose the Born–von Kármán
boundary condition on a 100-site chain.

3. Results and discussion

The parameters used aret‖ = 2.0 eV (a plausible value for conducting polymers [1]),
U = 1.0 eV andω(= ω′) = 0.2 eV. Thisω nearly equals the frequency of the stretching
mode of the carbon–carbon double bond. No experimental estimation ofg1, g2, g′

1 andg′
2

for conducting polymers is available to the best of our knowledge. Hence, we assume that
g1 = 0.2 eV andg2 = 0.05 eV in the intermediate-coupling regime. The modified Lang–
Firsov transformation leads to the so-called self-trapped state in the strong e–p interaction
regime as examined by Das and Sil [19]. We observed non-convergence in calculating
the regime such thatg1/ω > 2, indicating self-trapping. However, the present analysis is
effective for arbitrary parameters in the rangeg1/ω < 2 frequently applied to conductive
polymers such as polyacetylene [13]. In the regiong1/ω < 2, the calculations generally
converged within several self-consistent field cycles.

Figure 2. Charge- and spin-density profiles of a bipolaron withlD = 2, t‖ = 2.0, U = 1.0,
g1 = g′

1 = 0.2 andg2 = g′
2 = 0.05 (in electronvolts exceptlD).

For these appropriate parameters, the charge and spin densities are obtained as seen in
figure 2. What has to be noted is that the spin density becomes zero at all the sites, signifying
that this bipolaron is a singlet. Once such a singlet bipolaron is formed, the system shows
non-magnetic properties, while the electric conductivity is not changed. However, it should
be emphasized that, when the dopants are removed from the system, the ground state is
the charge density wave (CDW) state, delocalized all over the sites unlike that in figure 2.
In other words, the system reveals the bipolaron only after the doping. This bipolaron can
be regarded as a weakly localized entity formed and bound by the dopants rather than as
a mobile entity. Furthermore, it is seen that the bipolaron is more stabilized on increasing
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the number of dopants; a one-dopant system is stabilized by 0.153 eV and a two-dopant
system by 0.312 eV, compared with the total energy of the dopant-free system.

The stability of the bipolaron was examined for various values of the interdopant distance
lD (in units of the lattice constant). A local energy minimum of the bipolaron was found at
aroundlD = 2, which is only stable by 10−3 eV compared with other values oflD. Usually,
the artificial lattice deformation consisting of the tangent hyperbolic function has been
introduced in phonon subsystem [1]. Thus an energetically stable polaron (or bipolaron)
can be formed. In contrast, this shallow potential obtained in the present work is probably
derived from taking the average ofSHS† over the phonon vacuum state in order to obtain
equation (3). Nevertheless, our methodology succeeded in describing some aspects of the
bipolaron such as the separation into two polarons and so forth, due to incorporation of the
dopants.

Figure 3. Charge- and spin-density profiles forlD = 2, t‖ = 2.0, U = 1.0, g1 = g′
1 = 0.2 and

g2 = g′
2 = 0 (in electronvolts exceptlD).

Next, settingg2(= g′
2) = 0, we found that the charge density delocalizes over all the

sites as shown in figure 3. It is thus apparent that the nearest-neighbour site-diagonal e–p
interaction affects the formation of bipolaron, even though the coupling constant is not so
large. Moreover, we calculated for smaller values ofg′

1 and g′
2 than those ofg1 and g2,

in order to confirm whether the bipolaron scheme is changed or not. This is because the
vibration between the polymer chain and the dopant molecule is weaker than the intersite
vibration. However, it is verified that the tendency of the charge distribution does not
change.

The role of the electron–electron correlations, particularly the on-site Coulomb type,
becomes crucial in the bipolaron stability, since the charge of singlet bipolaron tends to
concentrate in the vicinity of the dopants according to the increase in the e–p interaction.
In figure 4, we show the charge and spin densities for the system with strong e–p coupling
(g1/ω = 2). It is seen that the positive and the negative spins appear in the vicinity of the
dopants, signifying the separation of the bipolaron into two polarons even for the smaller
value ofU (> 1). Also, it is clearly seen that such strong e–p interaction leads to the CDW.
The results suggest that

(i) the bipolaron can only exist in a delicate balance among the parameterst‖, U , g1

andg2 and, in particular, in the strong e–p coupling regime and
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Figure 4. Charge- and spin-density profiles forlD = 2, t‖ = 2.0, U = 1.0, g1 = g′
1 = 0.4 and

g2 = g′
2 = 0.01 (in electronvolts exceptlD).

(ii) the nearest-neighbour site-diagonal e–p interaction and the on-site Coulomb
repulsion terms are necessary for a more realistic calculation.

Let us consider here another effective Hamiltonian. In polaron theory, a unitary
transformation such as equation (2) is conventionally applied to the HamiltonianH , so
that the well known Holstein [17] reduction factor such as equation (4) can be obtained
after averagingSHS† over the vacuum state of phonon subsystem. This factor leads to
the self-trapping of the polaron in the strong e–p interaction regime. Recently, Zheng [21]
has shown, however, that the ordinary polaronic state must be replaced by the squeezed
polaronic state so as to find a new and more energetically stable state. In this squeezed state,
the phonon subsystem is transformed into the two-phonon coherent state [22] by introducing
a variational ground state|α〉 for the phonon subsystem in order to lower the total energy:

|α〉 = exp(−R)|0〉
R =

∑
i

α(bibi − b
†
i b

†
i )

(5)

whereα is a variational parameter.
AveragingSHS† over the variational ground state|α〉, a new effective Hamiltonian, in

which exp(−fi) andω in equation (3) are replaced by exp(−fi exp(−4α)) andω[sinh(2α)]2,
respectively, is obtained. The relative energy per site is plotted for different values ofα in
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figure 5. The parameters used are the same as those in figure 2. The squeezed polaronic
state leads to a net-energy gain, because the Holstein reduction factor is weakened while the
strong e–p interaction is maintained. Therefore, the squeeze transformation of equation (5)
must be important for examining the system in the strong e–p interaction regime. When
α = 0.42, the charge and spin are delocalized extensively compared with the caseα = 0.
This means that, by applying the squeeze transformation, relaxation of the highly distorted
lattice apparently leads to an increase in the transfer integralt‖. Without the squeeze
transformation, we observed oscillatory non-convergent behaviours in calculating the strong
e–p coupling regime. However, this situation is obviated by the transformation probably
due to the above-mentioned improvement int‖.

Figure 5. (E(α) − E(0))/N versusα plots underlD = 2, t‖ = 2.0, U = 1.0, g1 = g′
1 = 0.2

andg2 = g′
2 = 0.05 (in electronvolts exceptlD). The arrow indicates the optimized value for

the variational parameterα = 0.42.

We conclude that the bipolaron can be stabilized in the presence of dopants, which
bring a new lattice structure into Q-1D solids. This, of course, it is possible only under
suitable conditions, from which the bipolaron decomposes into two polarons. In particular,
the bipolaron separates into two polarons by the smaller on-site Coulomb interaction in
the strong e–p coupling regime. The analysis of the system containing two or more
chains coupled with dopants is required to illuminate the mechanism of the dopant-assisted
bipolaron transverse conduction in conductive polymers. We believe that this issue will be
effectively and visually described by the present method and will be reported elsewhere.
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Appendix

Here we represent the parameters in equation (3):

fi =



g2
1

ω2
− 2

g1g2

ω2
+ 3

g2
2

ω2
(when bothi and i + 1 are the nearest-neighbouring

sites to dopants)

g2
1

ω2
− 2

g1g2

ω2
+ 5g2

2

2ω2
(when eitheri or i + 1 is the nearest-neighbour site

to a dopant)

g2
1

ω2
− 2

g1g2

ω2
+ 2

g2
2

ω2
(elsewhere)

(A1)

f ′ = 1

2

(
g′

1

ω′ − g2

ω

)2

+ 1

2

(
g1

ω
− g′

2

ω′

)2

+ g2
2

ω2
(A2)

Ui
eff =


U − 2

g2
1

ω
− 4

g2
2

ω
+ 2

g′2
2

ω′ (for i = di)

U − 2
g2

1

ω
− 4

g2
2

ω
(elsewhere)

(A3)

U ′
eff = U ′ − 2

g′2
1

ω′ − 4
g′2

2

ω′ + 2
g2

2

ω
(A4)

ε′
P =


−g

2
1

ω
− 2

g2
2

ω
+ g′2

2

ω′ (for i = di)

−g
2
1

ω
− 2

g2
2

ω
(elsewhere)

(A5)

ε′
P = −g

′2
1

ω′ − 2
g′2

2

ω′ + g2
2

ω
(A6)

V1 = −4g1g2

ω
(A7)

V2 = −2g2
2

ω
(A8)

W1 = −2g1g2

ω
− 2g′

1g
′
2

ω′ (A9)

W2 = −2g′2
2

ω′ . (A10)
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